Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Countervailing, time-dependent effects on host autophagy promotes intracellular survival of Leishmania.

Identifieur interne : 000628 ( Main/Exploration ); précédent : 000627; suivant : 000629

Countervailing, time-dependent effects on host autophagy promotes intracellular survival of Leishmania.

Auteurs : Sneha A. Thomas [Canada] ; Devki Nandan [Canada] ; Jennifer Kass [Canada] ; Neil E. Reiner [Canada]

Source :

RBID : pubmed:29269416

Descripteurs français

English descriptors

Abstract

Autophagy is essential for cell survival under stress and has also been implicated in host defense. Here, we investigated the interactions between Leishmania donovani, the main etiological agent of visceral leishmaniasis, and the autophagic machinery of human macrophages. Our results revealed that during early infection-and via activation of the Akt pathway-Leishmania actively inhibits the induction of autophagy. However, by 24 h, Leishmania switched from being an inhibitor to an overall inducer of autophagy. These findings of a dynamic, biphasic response were based on the accumulation of lipidated light chain 3 (LC3), an autophagosome marker, by Western blotting and confocal fluorescence microscopy. We also present evidence that Leishmania induces delayed host cell autophagy via a mechanism independent of reduced activity of the mechanistic target of rapamycin (mTOR). Notably, Leishmania actively inhibited mTOR-regulated autophagy even at later stages of infection, whereas there was a clear induction of autophagy via some other mechanism. In this context, we examined host inositol monophosphatase (IMPase), reduced levels of which have been implicated in mTOR-independent autophagy, and we found that IMPase activity is significantly decreased in infected cells. These findings indicate that Leishmania uses an alternative pathway to mTOR to induce autophagy in host macrophages. Finally, RNAi-mediated down-regulation of host autophagy protein 5 (ATG5) or autophagy protein 9A (ATG9A) decreased parasite loads, demonstrating that autophagy is essential for Leishmania survival. We conclude that Leishmania uses an alternative pathway to induce host autophagy while simultaneously inhibiting mTOR-regulated autophagy to fine-tune the timing and magnitude of this process and to optimize parasite survival.

DOI: 10.1074/jbc.M117.808675
PubMed: 29269416
PubMed Central: PMC5818176


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Countervailing, time-dependent effects on host autophagy promotes intracellular survival of
<i>Leishmania</i>
.</title>
<author>
<name sortKey="Thomas, Sneha A" sort="Thomas, Sneha A" uniqKey="Thomas S" first="Sneha A" last="Thomas">Sneha A. Thomas</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and.</nlm:affiliation>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nandan, Devki" sort="Nandan, Devki" uniqKey="Nandan D" first="Devki" last="Nandan">Devki Nandan</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and.</nlm:affiliation>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kass, Jennifer" sort="Kass, Jennifer" uniqKey="Kass J" first="Jennifer" last="Kass">Jennifer Kass</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and.</nlm:affiliation>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Reiner, Neil E" sort="Reiner, Neil E" uniqKey="Reiner N" first="Neil E" last="Reiner">Neil E. Reiner</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and nreiner@mail.ubc.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver</wicri:regionArea>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique</region>
</placeName>
<orgName type="university">Université de la Colombie-Britannique</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29269416</idno>
<idno type="pmid">29269416</idno>
<idno type="doi">10.1074/jbc.M117.808675</idno>
<idno type="pmc">PMC5818176</idno>
<idno type="wicri:Area/Main/Corpus">000648</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000648</idno>
<idno type="wicri:Area/Main/Curation">000648</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000648</idno>
<idno type="wicri:Area/Main/Exploration">000648</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Countervailing, time-dependent effects on host autophagy promotes intracellular survival of
<i>Leishmania</i>
.</title>
<author>
<name sortKey="Thomas, Sneha A" sort="Thomas, Sneha A" uniqKey="Thomas S" first="Sneha A" last="Thomas">Sneha A. Thomas</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and.</nlm:affiliation>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Nandan, Devki" sort="Nandan, Devki" uniqKey="Nandan D" first="Devki" last="Nandan">Devki Nandan</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and.</nlm:affiliation>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kass, Jennifer" sort="Kass, Jennifer" uniqKey="Kass J" first="Jennifer" last="Kass">Jennifer Kass</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and.</nlm:affiliation>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<country>Canada</country>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Reiner, Neil E" sort="Reiner, Neil E" uniqKey="Reiner N" first="Neil E" last="Reiner">Neil E. Reiner</name>
<affiliation wicri:level="4">
<nlm:affiliation>From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and nreiner@mail.ubc.ca.</nlm:affiliation>
<country wicri:rule="url">Canada</country>
<wicri:regionArea>From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver</wicri:regionArea>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique</region>
</placeName>
<orgName type="university">Université de la Colombie-Britannique</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Autophagy (MeSH)</term>
<term>Autophagy-Related Protein 5 (genetics)</term>
<term>Autophagy-Related Protein 5 (metabolism)</term>
<term>Host-Parasite Interactions (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Leishmania donovani (genetics)</term>
<term>Leishmania donovani (growth & development)</term>
<term>Leishmania donovani (physiology)</term>
<term>Leishmaniasis, Visceral (genetics)</term>
<term>Leishmaniasis, Visceral (metabolism)</term>
<term>Leishmaniasis, Visceral (parasitology)</term>
<term>Leishmaniasis, Visceral (physiopathology)</term>
<term>Macrophages (cytology)</term>
<term>Macrophages (metabolism)</term>
<term>Macrophages (parasitology)</term>
<term>Microtubule-Associated Proteins (genetics)</term>
<term>Microtubule-Associated Proteins (metabolism)</term>
<term>Phosphoric Monoester Hydrolases (genetics)</term>
<term>Phosphoric Monoester Hydrolases (metabolism)</term>
<term>TOR Serine-Threonine Kinases (genetics)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Autophagie (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Interactions hôte-parasite (MeSH)</term>
<term>Leishmania donovani (croissance et développement)</term>
<term>Leishmania donovani (génétique)</term>
<term>Leishmania donovani (physiologie)</term>
<term>Leishmaniose viscérale (génétique)</term>
<term>Leishmaniose viscérale (métabolisme)</term>
<term>Leishmaniose viscérale (parasitologie)</term>
<term>Leishmaniose viscérale (physiopathologie)</term>
<term>Macrophages (cytologie)</term>
<term>Macrophages (métabolisme)</term>
<term>Macrophages (parasitologie)</term>
<term>Phosphoric monoester hydrolases (génétique)</term>
<term>Phosphoric monoester hydrolases (métabolisme)</term>
<term>Protéine-5 associée à l'autophagie (génétique)</term>
<term>Protéine-5 associée à l'autophagie (métabolisme)</term>
<term>Protéines associées aux microtubules (génétique)</term>
<term>Protéines associées aux microtubules (métabolisme)</term>
<term>Sérine-thréonine kinases TOR (génétique)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Autophagy-Related Protein 5</term>
<term>Microtubule-Associated Proteins</term>
<term>Phosphoric Monoester Hydrolases</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Autophagy-Related Protein 5</term>
<term>Microtubule-Associated Proteins</term>
<term>Phosphoric Monoester Hydrolases</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Leishmania donovani</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Leishmania donovani</term>
<term>Leishmaniasis, Visceral</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Leishmania donovani</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Leishmania donovani</term>
<term>Leishmaniose viscérale</term>
<term>Phosphoric monoester hydrolases</term>
<term>Protéine-5 associée à l'autophagie</term>
<term>Protéines associées aux microtubules</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Leishmaniasis, Visceral</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Leishmaniose viscérale</term>
<term>Macrophages</term>
<term>Phosphoric monoester hydrolases</term>
<term>Protéine-5 associée à l'autophagie</term>
<term>Protéines associées aux microtubules</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Leishmaniose viscérale</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Leishmaniasis, Visceral</term>
<term>Macrophages</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Leishmania donovani</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Leishmania donovani</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathologie" xml:lang="fr">
<term>Leishmaniose viscérale</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Leishmaniasis, Visceral</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Autophagy</term>
<term>Host-Parasite Interactions</term>
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Autophagie</term>
<term>Humains</term>
<term>Interactions hôte-parasite</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Autophagy is essential for cell survival under stress and has also been implicated in host defense. Here, we investigated the interactions between
<i>Leishmania donovani</i>
, the main etiological agent of visceral leishmaniasis, and the autophagic machinery of human macrophages. Our results revealed that during early infection-and via activation of the Akt pathway-
<i>Leishmania</i>
actively inhibits the induction of autophagy. However, by 24 h,
<i>Leishmania</i>
switched from being an inhibitor to an overall inducer of autophagy. These findings of a dynamic, biphasic response were based on the accumulation of lipidated light chain 3 (LC3), an autophagosome marker, by Western blotting and confocal fluorescence microscopy. We also present evidence that
<i>Leishmania</i>
induces delayed host cell autophagy via a mechanism independent of reduced activity of the mechanistic target of rapamycin (mTOR). Notably,
<i>Leishmania</i>
actively inhibited mTOR-regulated autophagy even at later stages of infection, whereas there was a clear induction of autophagy via some other mechanism. In this context, we examined host inositol monophosphatase (IMPase), reduced levels of which have been implicated in mTOR-independent autophagy, and we found that IMPase activity is significantly decreased in infected cells. These findings indicate that
<i>Leishmania</i>
uses an alternative pathway to mTOR to induce autophagy in host macrophages. Finally, RNAi-mediated down-regulation of host autophagy protein 5 (ATG5) or autophagy protein 9A (ATG9A) decreased parasite loads, demonstrating that autophagy is essential for
<i>Leishmania</i>
survival. We conclude that
<i>Leishmania</i>
uses an alternative pathway to induce host autophagy while simultaneously inhibiting mTOR-regulated autophagy to fine-tune the timing and magnitude of this process and to optimize parasite survival.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29269416</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>02</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>293</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2018</Year>
<Month>02</Month>
<Day>16</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Countervailing, time-dependent effects on host autophagy promotes intracellular survival of
<i>Leishmania</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>2617-2630</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M117.808675</ELocationID>
<Abstract>
<AbstractText>Autophagy is essential for cell survival under stress and has also been implicated in host defense. Here, we investigated the interactions between
<i>Leishmania donovani</i>
, the main etiological agent of visceral leishmaniasis, and the autophagic machinery of human macrophages. Our results revealed that during early infection-and via activation of the Akt pathway-
<i>Leishmania</i>
actively inhibits the induction of autophagy. However, by 24 h,
<i>Leishmania</i>
switched from being an inhibitor to an overall inducer of autophagy. These findings of a dynamic, biphasic response were based on the accumulation of lipidated light chain 3 (LC3), an autophagosome marker, by Western blotting and confocal fluorescence microscopy. We also present evidence that
<i>Leishmania</i>
induces delayed host cell autophagy via a mechanism independent of reduced activity of the mechanistic target of rapamycin (mTOR). Notably,
<i>Leishmania</i>
actively inhibited mTOR-regulated autophagy even at later stages of infection, whereas there was a clear induction of autophagy via some other mechanism. In this context, we examined host inositol monophosphatase (IMPase), reduced levels of which have been implicated in mTOR-independent autophagy, and we found that IMPase activity is significantly decreased in infected cells. These findings indicate that
<i>Leishmania</i>
uses an alternative pathway to mTOR to induce autophagy in host macrophages. Finally, RNAi-mediated down-regulation of host autophagy protein 5 (ATG5) or autophagy protein 9A (ATG9A) decreased parasite loads, demonstrating that autophagy is essential for
<i>Leishmania</i>
survival. We conclude that
<i>Leishmania</i>
uses an alternative pathway to induce host autophagy while simultaneously inhibiting mTOR-regulated autophagy to fine-tune the timing and magnitude of this process and to optimize parasite survival.</AbstractText>
<CopyrightInformation>© 2018 by The American Society for Biochemistry and Molecular Biology, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Thomas</LastName>
<ForeName>Sneha A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Nandan</LastName>
<ForeName>Devki</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kass</LastName>
<ForeName>Jennifer</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reiner</LastName>
<ForeName>Neil E</ForeName>
<Initials>NE</Initials>
<AffiliationInfo>
<Affiliation>From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and nreiner@mail.ubc.ca.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MOP-125879</GrantID>
<Agency>CIHR</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>12</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000071187">Autophagy-Related Protein 5</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008869">Microtubule-Associated Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C466626">light chain 3, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.2</RegistryNumber>
<NameOfSubstance UI="D010744">Phosphoric Monoester Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.3.25</RegistryNumber>
<NameOfSubstance UI="C021822">myo-inositol-1 (or 4)-monophosphatase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="Y">Autophagy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071187" MajorTopicYN="N">Autophagy-Related Protein 5</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006790" MajorTopicYN="Y">Host-Parasite Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007893" MajorTopicYN="N">Leishmania donovani</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007898" MajorTopicYN="N">Leishmaniasis, Visceral</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="Y">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008264" MajorTopicYN="N">Macrophages</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008869" MajorTopicYN="N">Microtubule-Associated Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010744" MajorTopicYN="N">Phosphoric Monoester Hydrolases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Leishmania</Keyword>
<Keyword MajorTopicYN="Y">autophagy</Keyword>
<Keyword MajorTopicYN="Y">host-pathogen interaction</Keyword>
<Keyword MajorTopicYN="Y">macrophage</Keyword>
<Keyword MajorTopicYN="Y">parasite</Keyword>
<Keyword MajorTopicYN="Y">pathogenesis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>07</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>12</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29269416</ArticleId>
<ArticleId IdType="pii">M117.808675</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M117.808675</ArticleId>
<ArticleId IdType="pmc">PMC5818176</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Autophagy. 2015;11(2):285-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25801301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Apr 17;10(4):e0122888</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25884947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2005 Sep 26;170(7):1101-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16186256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2012 Nov 14;31(22):4304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23064152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2011 Jul 11;9(8):604-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21747391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2014;13(9):1400-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24626186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Feb 5;140(3):313-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Aug 17;282(33):24131-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17580304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Glob Infect Dis. 2010 May;2(2):177-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20606974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 17;119(6):753-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15607973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasitol Int. 2009 Dec;58(4):475-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19591960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2011 Jan;43(1):47-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20932932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Pharmacol Sin. 2013 May;34(5):625-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23524572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2007 Mar-Apr;3(2):117-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17204850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1988 Jun;171(2):266-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3044186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2014 Jun;16(6):495-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24875736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2011 Oct 31;10(11):868-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22037041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2010 May;221(1):3-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20225336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 May;10(5):307-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19339977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2010 Oct;90(4):1383-435</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20959619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2012 Jan 1;188(1):367-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22140263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Immunol Ther Exp (Warsz). 2002;50(2):131-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12022702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Immunol. 2008 Jul 15;9:35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18627610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2012 Dec 30;(70):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23299097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2014 Jun;82(6):2229-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24643534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2016 Oct 2;12 (10 ):1817-1831</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27459332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2013 Oct;13(10):722-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24064518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2008 Feb;10(2):301-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18070117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2015 Mar;264(1):220-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25703562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2011 Jan;121(1):37-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21135505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jan 16;284(3):1694-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19028680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2011 Nov;7(11):1273-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21997368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2012 Dec 01;4(12):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23124837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasit Vectors. 2015 Jul 31;8:404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26226952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2017 Aug 28;18(9):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28846632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1992 Feb 15;148(4):1188-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1737935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2012 Sep 01;4(9):a011189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22952397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Gastroenterol. 2015 Jan;31(1):14-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25394238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 2005 Apr;18(2):293-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15831826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e35671</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22693548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tissue Cell. 2012 Dec;44(6):401-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22939777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2013 Oct;41(5):1103-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24059496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2017 Jun 20;86:225-244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28301741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 May 5;106(18):7583-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2012 Jun;91(6):887-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22442494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Nov 1;15(21):2852-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11691836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Neurosci. 2014 Jun 18;5(6):434-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24738557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Apr 2;584(7):1374-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20153326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2010 Apr 2;584(7):1287-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20083114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Int. 2011;2011:343961</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22091401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1992;61:225-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1323235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Microbiol Immunol. 2012 Feb;201(1):37-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21567173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbes Infect. 2009 Feb;11(2):181-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19070676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2007 Nov-Dec;3(6):542-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17611390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Biol Med (Maywood). 2009 Feb;234(2):171-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19064937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Aug 11;292(32):13087-13096</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28607148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Mol Biol Transl Sci. 2009;90:109-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20374740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2015 Mar;75:13-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25484342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2005 Jul;1(2):84-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16874052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Oct 22;40(2):310-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20965424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2015 May;83(5):1853-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25690103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 May 16;417(6886):292-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12015604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2005 Jul;7(7):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15953030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2007 Jan;9(1):84-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16889626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1999 Mar;112 ( Pt 5):681-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9973603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1994 Mar 15;152(6):2930-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8144893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Mar 15;123(Pt 6):842-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20159964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2009 Jul;5(5):725-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2011 Apr 21;9(4):331-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21501832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Immunol. 2016 Nov;309:19-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27622385</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Colombie-Britannique</li>
<li>Colombie-Britannique </li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Colombie-Britannique ">
<name sortKey="Thomas, Sneha A" sort="Thomas, Sneha A" uniqKey="Thomas S" first="Sneha A" last="Thomas">Sneha A. Thomas</name>
</region>
<name sortKey="Kass, Jennifer" sort="Kass, Jennifer" uniqKey="Kass J" first="Jennifer" last="Kass">Jennifer Kass</name>
<name sortKey="Nandan, Devki" sort="Nandan, Devki" uniqKey="Nandan D" first="Devki" last="Nandan">Devki Nandan</name>
<name sortKey="Reiner, Neil E" sort="Reiner, Neil E" uniqKey="Reiner N" first="Neil E" last="Reiner">Neil E. Reiner</name>
<name sortKey="Reiner, Neil E" sort="Reiner, Neil E" uniqKey="Reiner N" first="Neil E" last="Reiner">Neil E. Reiner</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000628 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000628 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29269416
   |texte=   Countervailing, time-dependent effects on host autophagy promotes intracellular survival of Leishmania.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29269416" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020